網(wǎng)站首頁
醫(yī)師
藥師
護(hù)士
衛(wèi)生資格
高級職稱
住院醫(yī)師
畜牧獸醫(yī)
醫(yī)學(xué)考研
醫(yī)學(xué)論文
醫(yī)學(xué)會議
考試寶典
網(wǎng)校
論壇
招聘
最新更新
網(wǎng)站地圖
中醫(yī)理論中醫(yī)臨床診治中醫(yī)藥術(shù)語標(biāo)準(zhǔn)中國方劑數(shù)據(jù)庫中醫(yī)疾病數(shù)據(jù)庫OCT說明書不良反應(yīng)中草藥圖譜藥物數(shù)據(jù)藥學(xué)下載
您現(xiàn)在的位置: 醫(yī)學(xué)全在線 > 中醫(yī)理論 > 中醫(yī)書籍 > 正文:第三節(jié) 聽覺器官
    

生理學(xué):第三節(jié) 聽覺器官

聽覺的外周感受器官是耳,耳的適宜刺激是一定頻率范圍內(nèi)的聲波振動。耳由外耳、中耳和內(nèi)耳迷路中的耳蝸部分組成。由聲源振動引起空氣產(chǎn)生疏密波,后者通過外耳道、鼓膜和聽骨鏈的傳遞,引起耳蝸中淋巴液和基底膜的振動,使耳蝸科蒂器官中的毛細(xì)胞產(chǎn)生興奮?频倨鞴俸推洹

聽覺的外周感受器官是耳,耳的適宜刺激是一定頻率范圍內(nèi)的聲波振動。耳由外耳、中耳和內(nèi)耳迷路中的耳蝸部分組成。由聲源振動引起空氣產(chǎn)生疏密波,后者通過外耳道、鼓膜和聽骨鏈的傳遞,引起耳蝸中淋巴液和基底膜的振動,使耳蝸科蒂器官中的毛細(xì)胞產(chǎn)生興奮。科蒂器官和其中所含的毛細(xì)胞,是真正的聲音感受裝置,外耳和中耳等結(jié)構(gòu)只是輔助振動波到達(dá)耳蝸的傳音裝置。聽神經(jīng)纖維就分布在毛細(xì)胞下方的基底膜中;振動波的機械能在這里轉(zhuǎn)變?yōu)槁犐窠?jīng)纖維上的神經(jīng)沖動。并以神經(jīng)沖動的不同頻率和組合形式對聲音信息進(jìn)入編碼,傳送到大腦皮層聽覺中構(gòu),產(chǎn)生聽覺。聽覺對動物適應(yīng)環(huán)境和人類認(rèn)識自然有重要的意義;在人類,有聲語言是互

通信息交流思想的重要工具。

因此,在耳的生理功能研究中主要解決的問題是:聲音怎樣通過外耳、中耳等傳音裝置傳到耳蝸,以及耳蝸的感音裝置如何把耳蝸淋巴液和基底膜的振動轉(zhuǎn)變成為神經(jīng)沖動。

一、人耳的聽閾和聽域

耳的適宜刺激是空氣振動的疏密波,但振動的頻率必須在一定的范圍內(nèi),并且達(dá)到一定強度,才能被耳蝸所感受,引起聽覺。通常人耳能感受的振動頻率在16-20000Hz之間,而且對于其中每一種頻率,都有一個剛好能引起聽覺的最小振動強度,稱為聽閾。當(dāng)振動強度在吸閾以上繼續(xù)增加時,聽覺的感受也相應(yīng)增強,但當(dāng)振動強度增加到某一限度時,它引起的將不單是聽覺,同時還會引起鼓膜的疼痛感覺,這個限度稱為最大可聽閾。由于對每一個振動頻率都有自己的聽閾和最大或聽閾,因而就能繪制出表示人耳對振動頻率和強度的感受范圍的坐標(biāo)圖,如圖9-14所示。其中下方曲線表示不同頻率振動的聽閾,上方曲線表示它們的最大聽閾,兩得所包含的面積則稱為聽域。凡是人所能感受的聲音,它的頻率和強度的坐標(biāo)都應(yīng)在聽域的范圍之內(nèi)。由聽域圖可看出,人耳最敏感的頻率在1000-3000Hz之間;而日常語言的頻率較此略低,語音的強度則在聽閾和最大可聽閾之間的中等強度處。

二、外耳和中耳的傳音作用

(一)耳廓和外耳道的集音作用和共鳴腔作用

外耳由耳廓和外耳道組成。人耳耳廓的運動能力已經(jīng)退化,但前方和側(cè)方來的聲音可直接進(jìn)入外耳道,且耳廓的形狀有利于聲波能量的聚集,引起較強的鼓膜振動;同樣的聲音如來自耳廓后方,則可被耳廓遮擋,音感較弱。因此,稍稍轉(zhuǎn)動頭的位置,根據(jù)這時兩耳聲音強弱的輕微變化,可以判斷音源的位置。

外耳首是聲波傳導(dǎo)的通路,一端開口,一端終止于鼓膜。根據(jù)物理學(xué)原理,充氣的管道可與波長4倍管長的聲波產(chǎn)生最大的共振作用;外耳道長約2.5cm,據(jù)此計算,它作為一個共鳴腔的最佳共振頻率約在3500Hz附近;這樣的聲音由外耳道傳到鼓膜時,其強度可以增強10倍。

(二)鼓膜和中耳聽骨鏈增壓效應(yīng)

中耳包括鼓膜、鼓室、聽骨鏈、中耳小肌和咽鼓管等主要結(jié)構(gòu),其中鼓膜、聽骨鏈和內(nèi)耳卵圓窗之間的關(guān)系如圖9-15所示,它們構(gòu)成了聲音由外耳傳向耳蝸的最有效通路。聲波在到達(dá)鼓膜交,由空氣為振動介質(zhì);由鼓膜經(jīng)聽骨鏈到達(dá)卵圓窗膜時,振動介質(zhì)變?yōu)楣滔嗟纳锝M織。由于不同介質(zhì)的聲阻攔不同,理論上當(dāng)振動在這些介質(zhì)之間傳遞時,能量衰減極大,估計可達(dá)99%或更多。但由于由鼓膜到卵圓窗膜之間的傳遞系統(tǒng)的特殊力學(xué)特性,振動經(jīng)中耳傳遞時發(fā)生了增壓效應(yīng),補償了由聲阻擋不同造成的能量耗損。

鼓膜呈橢圓形,面積約50-90mm2,厚度約0.1mm。它不是一個平面膜,呈頂點朝向中耳的漏斗形。其內(nèi)側(cè)連錘骨柄,后者位于鼓膜的纖維層和粘膜層之間,自前上方向下,終止于鼓膜中心處。鼓膜很像電話機受話器中的振膜,是一個壓力承受裝置,具有較好的頻率響應(yīng)和較小的失真度,而且它的形狀有利于把振動傳遞給位于漏斗尖頂處的錘骨柄。據(jù)觀察,當(dāng)頻率在2400Hz以下的聲波作用于鼓膜時,鼓膜都可以復(fù)制外加振動的頻率,而且鼓膜的振動與聲波振動同始同終,很少殘余振動。

圖9-15 人中耳和耳蝸關(guān)系模式圖

點線表示鼓膜向內(nèi)側(cè)振動時各有關(guān)結(jié)構(gòu)的移動情況

聽骨鏈由錘骨、砧骨及鐙骨依m.zxtf.net.cn/rencai/次連接而成。錘骨柄附著于鼓膜,鐙骨腳板和卵圓窗膜相接,砧骨居中,將錘骨和鐙骨連接起來,使三塊聽小骨形成一個兩壁之間呈固定角度的杠桿。錘骨柄為長臂,砧骨長突為短臂。該械桿系統(tǒng)的特點是支點剛好在整個聽骨鏈的重心上,因而在能量傳遞過程中惰性最小,效率最高。鼓膜振動時,如錘骨柄內(nèi)移,則砧骨的長突和鐙骨亦和錘骨柄作同方向的內(nèi)移,如圖9-15中點線所示。

中耳增壓泖應(yīng)主要有以下兩個因素:一是由于鼓膜面積和卵圓窗膜的面積大小有差別,鼓膜振動時,實際發(fā)生振動的面積約55mm2,而卵圓窗膜的面積只有3.2mm2,如果聽骨鏈傳遞時總壓力不變,則作用于卵圓窗膜上的壓強將增大55÷3.2=17倍;二是聽骨鏈中杠桿長臂和短臂之比約為1.3:1,即錘骨柄較長,于是短臂一側(cè)的壓力將增大為原來的1.3倍。這樣算來,整個中耳傳遞過程的增壓效應(yīng)為17×1.3=22倍。

與中耳傳音功能有關(guān)的,還有中耳內(nèi)的兩條小肌肉,其中鼓膜張肌收縮時,可使錘骨柄和鼓膜內(nèi)向牽引,增加鼓膜緊張度;鐙骨肌收縮時,使鐙骨腳板向外后方移動。強烈的聲響氣流經(jīng)過外耳道,以及角膜和鼻粘膜受到機械刺激時,都可以反射性地引起這兩塊小肌肉的收縮,其結(jié)果是使鼓膜緊張,使各聽小骨之間的邊境更為緊張,導(dǎo)致吸骨鏈傳遞振動的幅度減。蛔枇哟,總的效果是使中耳的傳音效能有所減弱。據(jù)認(rèn)為,這一反應(yīng)可以阻止較強的振動傳到耳蝸,對感音裝置起到某種保護(hù)作用;但由于聲音引起中耳肌的反射性收縮需經(jīng)過十幾個毫秒的潛伏期,故它們對突然發(fā)生的短暫爆炸聲的保護(hù)作用不大。

(三)咽鼓管的功能

咽鼓管亦稱耳咽管,它連通鼓室和鼻咽部,這就使鼓室內(nèi)空氣和大氣相通,因而通過咽鼓管,可以平衡鼓室內(nèi)空氣和大氣壓之間有可能出現(xiàn)的壓力差,這對于維持鼓膜的正常位置、形狀和振動性能有重要意義。咽鼓管阻塞時,鼓室氣體將被吸收,使鼓室內(nèi)壓力下降,引起鼓膜內(nèi)陷。暫時的鼓膜內(nèi)外壓力差,常發(fā)生在外耳道內(nèi)壓力首先發(fā)生改變而鼓室內(nèi)壓力仍處于原初的狀態(tài),如飛機的突然升降長潛水等,此時如果不能通過咽鼓管使鼓室內(nèi)壓力外耳道壓力(或大氣壓)取得平衡,就會在鼓膜兩側(cè)出現(xiàn)巨大的壓力差。據(jù)觀察,這個壓力差如達(dá)到9.33-10.76kPa(70-80mmHg),將會引起鼓膜強烈痛疼;壓力差超過24kPa(180mmHg)時,可能造成鼓膜破裂。咽鼓管在正常情況下其鼻咽部開口常處于閉合狀態(tài),在吞咽、打呵欠或噴嚏時由于腭帆張肌等肌肉的收縮,可使管口暫時開放,有利于氣壓平衡。

聲音的骨傳導(dǎo) 正常時聽覺的引起,是由于聲波經(jīng)外耳道引起鼓膜的振動,再經(jīng)聽骨鏈和卵圓窗膜進(jìn)入耳蝸,這一條聲音傳遞地途徑,稱為氣傳導(dǎo)。此外,聲波還可以直接引起顱骨的振動,再引起位于顳骨骨質(zhì)中的耳蝸內(nèi)淋巴的振動,這稱為骨傳導(dǎo)。骨傳導(dǎo)正常時較氣傳導(dǎo)不敏感得多,幾乎不能感到它的存在;能察知骨傳導(dǎo)存在的一種方面是,把一個振動闃的音叉的柄直接和頗骨接觸,這時人會感到一個稍有異樣的聲音;當(dāng)這個聲音減弱到聽不到以后,再把音叉迅速移到耳廓前方,這時又能聽到聲音的存在。這個簡單實驗說明骨傳導(dǎo)的存在,也說明正常時氣傳導(dǎo)較骨傳導(dǎo)為靈敏?梢哉J(rèn)為,骨傳導(dǎo)在正常聽覺的引起中作用微乎其微。不過臨床上常通過檢查患者氣傳導(dǎo)和骨傳導(dǎo)受損的情況,判斷聽覺異常的產(chǎn)生部位和原因。

三、耳蝸的感音換能作用

耳蝸的作用是把傳到耳蝸的機械振動轉(zhuǎn)變成聽神經(jīng)纖維的神經(jīng)沖動。在這一轉(zhuǎn)變過程中,耳蝸基底膜的振動是一個關(guān)鍵因素。它的振動使位于它上面的毛細(xì)胞受到刺激,引起耳蝸內(nèi)發(fā)生各種過渡性的電變化,最后引起位于毛細(xì)胞底部的傳入神經(jīng)纖維產(chǎn)生動作電位。

(一)耳蝸的結(jié)構(gòu)要點

耳蝸是一條骨質(zhì)的管道圍繞一個骨軸盤旋21/2-23/4周而成。在耳蝸管的橫斷面上可見到兩個分界膜,一為斜行的前庭膜,一為橫行的基底膜,此兩膜將管道分為三個腔,分別稱為前庭階、鼓階和蝸管(圖9-16)。前庭附在耳蝸底部與卵圓窗膜相接,內(nèi)充外淋巴;鼓階在耳蝸底部與圓窗膜相接,也充滿外淋巴,后者在耳蝸頂部和前庭階中的外淋巴相交通;蝸管是一個管,其中內(nèi)淋巴浸浴著位于基底膜上的螺旋器的表面。螺旋器的構(gòu)造極為復(fù)雜;在蝸管的橫斷面上的靠蝸軸一側(cè),可看到有一行內(nèi)毛細(xì)胞縱向排列;在蝸管的靠外一側(cè),有3-5行外毛細(xì)胞縱向排列(參看圖9-18);此外還有其他的支持細(xì)胞和存在于這些細(xì)胞間的較大的間隙,包括內(nèi)、外隧道和Nuel間隙。需要指出的是,這些間隙中的液體在成分上和外淋巴一致,它們和蝸管中的內(nèi)淋巴不相交通,但可通過基底膜上的小孔與鼓階中的外淋巴相交通。這樣的結(jié)構(gòu)使得毛細(xì)胞的頂部與蝸管中的內(nèi)淋巴相接觸,而毛細(xì)胞的周圍和底部則和外淋巴相接觸。每一個毛細(xì)胞的項部表面,都有上百條排列整齊的聽毛,其中較長的一些埋植在蓋膜的冰膠狀物質(zhì)中,有些則只和蓋膜接觸。蓋膜在內(nèi)側(cè)連耳蝸軸,外側(cè)游離在內(nèi)淋巴中。

(二)基底膜的振動和行波理論

當(dāng)聲流振動通過聽骨鏈到達(dá)卵圓窗膜時,壓力變化立即傳給隔離蝸內(nèi)液體和膜性結(jié)構(gòu);如果卵圓窗膜內(nèi)移,前庭膜和基底膜也將下移,最后是鼓階的外淋巴壓迫圓窗膜外移;相反,當(dāng)卵圓窗膜外移時,整個耳蝸內(nèi)結(jié)構(gòu)又作反方向的移動,于是形成振動?梢钥闯,在正常氣傳導(dǎo)的過程中,圓窗膜實際起著緩沖耳蝸內(nèi)壓力變化的作用,是耳蝸內(nèi)結(jié)構(gòu)發(fā)生振動的必要條件。有人用直接觀察的方法m.zxtf.net.cn/yishi/,詳細(xì)記錄了聲音刺激引起的基底膜振動的情況,這對于了解基底膜振動的形式,以及這種振動在耳蝸接受不同頻率的聲音刺激時有何差異,提供了可靠的依據(jù)。觀察表明,基底膜的振動是以行波(traveling wave)的方式進(jìn)行的,即內(nèi)淋巴的振動首先是靠近卵圓窗處引起基底膜的振動,此波動再以行波的形式沿基底膜向耳蝸的頂部方向傳播,就像人在抖動一條綢帶時,有行波沿綢帶向遠(yuǎn)端傳播一樣。下一步還證明,不同頻率的聲音引起的行波都從基底膜的底部,即靠近卵圓窗膜處開始,但頻率不同時,行波傳播的遠(yuǎn)近和最大行波的出現(xiàn)部位有氣溫同,如圖9-17所示,;這就是振動頻率愈低,行波傳播愈遠(yuǎn),最大行波振幅出現(xiàn)的部位愈靠近基底膜頂部,而且在行波最大振幅出現(xiàn)后,行波很快消失,不再傳播;相反地,高頻率聲音引起的基底膜振動,只局限于卵圓窗附近。

圖9-16 耳蝸管的橫斷面圖

不同頻率的振動引起的基底膜不同形式的行波傳播,主要由基底膜的某些物理性質(zhì)決定的;啄さ拈L度在人約為30mm,較耳蝸略短,但寬度在靠近卵圓窗處只有0.04mm,以且逐漸加寬;與此相對應(yīng),基底膜上的蚴旋器的高度和重量,也隨著基底膜的加寬而變大。這些因素決定了基底膜愈靠近底部,共振頻率愈高,愈靠近頂部,共振頻率愈低;這就使得低頻振動引起的行波在向頂部傳播時阻力較小,而高頻振動引起的行波只限局在底部附近。

不同頻率的聲音引起的不同形式的基底膜的振動,被認(rèn)為是耳蝸能區(qū)分不同聲音頻率的基礎(chǔ)。破壞動物不同部位基底膜的實驗和臨床上不同性質(zhì)耳聾原因的研究,都證明了這一結(jié)論,亦即耳蝸底部受時主要影響高頻聽力,耳蝸頂部受損時主要影響低頻聽力。不能理解,既然每一種振動頻率在基底膜上都有一個特定的行波傳播范圍和最大振幅區(qū),與這些區(qū)域有關(guān)的毛細(xì)胞和聽神經(jīng)纖維就會受到最大的刺激,這樣,來自基底膜不同區(qū)域的聽神經(jīng)纖維的神經(jīng)沖動及其組合形式,傳到聽覺中樞的不同部位,就可能引起不同音調(diào)的感覺。

基底膜的振動怎樣使毛細(xì)胞受到刺激,如圖9-18所示。毛細(xì)胞頂端的聽毛有些埋在蓋膜的膠狀物中,有些是和蓋膜的下面接觸;因蓋膜和基底膜的振動軸不一致,于是兩膜之間有一個橫向的交錯移動,使聽毛受到一個切向力的作用而彎曲(圖9-18,下)。據(jù)研究,毛細(xì)胞聽纖毛的彎曲,是耳蝸中由機械能轉(zhuǎn)為電變化的第一步。

圖9-18基底膜和蓋膜振動時毛細(xì)胞頂部聽毛受力情況

上:靜止時的情況 下:基底膜在振動中上移時,因與蓋膜之間的切向運動,聽毛彎向蝸管外側(cè)

(三)耳蝸的生物現(xiàn)象

在耳蝸結(jié)構(gòu)中除了能記錄到與聽神經(jīng)纖維興奮有關(guān)的動作電位,還能記錄到一些其他形式的電變化。在耳蝸未受到刺激時,如果把一個電極放在鼓階外淋巴中,并接地使之保持在零電位,那么用另一個測量電極可測出蝸管內(nèi)淋巴中的電位為+80mV左右,這稱為內(nèi)淋巴電位。如果將此測量電極刺入毛細(xì)胞膜內(nèi),則膜內(nèi)電位為-70?/FONT>-80mV。毛細(xì)胞頂端膜外的浸浴液為內(nèi)淋巴,則該處毛細(xì)胞內(nèi)(相當(dāng)于-80mV)和膜外(相當(dāng)于+80mV)的電位差當(dāng)為160mV;而在毛細(xì)胞周圍的浸浴液為外淋巴(電位相當(dāng)于零),該處膜內(nèi)外的電位差只有80mV左右;這是毛細(xì)胞靜息電位和一般細(xì)胞不同之處。據(jù)實驗分析,內(nèi)淋巴中正電位的產(chǎn)生和維持,同蝸管外側(cè)壁處的血管紋結(jié)構(gòu)的細(xì)胞活動有直接關(guān)系(圖9-16),并且對缺 O2非常敏感;有人發(fā)現(xiàn),血管紋細(xì)胞的膜含有大量活性很高的ATP酶,具有“鈉泵”的作用,它們可依靠分解ATP獲得能量,將血漿中的K+泵入內(nèi)淋巴,將內(nèi)淋巴中的Na+泵入血漿,但被轉(zhuǎn)運的K+擔(dān)超過了Na+的量,這就使內(nèi)淋巴中有大量K+蓄積,因而使內(nèi)淋巴保持了較高的正電位;缺O(jiān)2使ATP的生成受阻,也使Na+泵的活動受阻,因而使內(nèi)淋巴的正電位不能維持。

當(dāng)耳蝸接受聲音刺激時,在耳蝸及其附近結(jié)構(gòu)又可記錄到一種特殊的電波動,稱為微音器電位。這是一種交流性質(zhì)的電變化,在一定的刺激強度范圍內(nèi),它的頻率和幅度與聲波振動完全一致(圖9-19);這一現(xiàn)象正如向一個電話機的受話器或微音器(即麥克風(fēng))發(fā)聲時,它們可將聲音振動轉(zhuǎn)變?yōu)椴ㄐ晤愃频囊纛l電信號一樣,這正是把耳蝸的這種電變化稱為微音器電位的原因。事實上,如果對著一個實驗動物和耳廓講話,同時在耳蝸引導(dǎo)它的微音器電位,并將此電位經(jīng)放大后連接到一個揚聲器,那么揚聲器發(fā)出的聲音正好是講話的聲音!這一實驗生動地說明,耳蝸在這里起著類似微音器的作用,能把聲波變成相應(yīng)的音頻電信號。微音器電位的其它一些特點是:潛伏期極短,小于0.1ms;沒有不應(yīng)期;對缺O(jiān)2和深麻醉相對地不敏感,以及它在聽神經(jīng)纖維變性時仍能出現(xiàn)等。

圖9-19 由短聲刺激引起的微音器電位和聽神經(jīng)動作電位

CM:微音器電位 AP:耳蝸神經(jīng)動作電位(包括N1、N2、N3三個負(fù)電位)

A與B對比表明,聲音位相改變時,微音器電位位相倒轉(zhuǎn),但神經(jīng)動作

電位位相沒有變化 C:在白噪音作用下,AP消失,CM仍存在

用微電極進(jìn)入毛細(xì)胞的細(xì)胞內(nèi)電變化記錄的實驗證明,所謂微音器電位就是多個毛細(xì)胞在接受聲音刺激時產(chǎn)生的感受器電位的復(fù)合表現(xiàn);在記錄單一毛細(xì)胞跨膜電位的情況下,發(fā)現(xiàn)聽毛只要有0.1。的角位移,就可引起毛細(xì)胞出現(xiàn)感受器電位,而且電位變化的方向與聽毛受力的方向有關(guān),亦即此電位既可是去極化的;這就說明了為什么微音器電位的波動同聲波振動的頻率和幅度相一致。

由于聽毛的角位移和產(chǎn)生感受器電位之間只有一極短潛伏期,因而認(rèn)為后者的產(chǎn)生是由于毛細(xì)胞頂部膜中有機械門控通道的存在,聽毛受力引起該處膜的輕微變形,就足以改變這種通道蛋白質(zhì)的功能狀態(tài),引起跨膜離子移動和相應(yīng)的電位反應(yīng)。在毛細(xì)胞,它的感受器電位可引起細(xì)胞基底部的遞質(zhì)(可能是谷氨酸門冬氨酸)釋放量的改變,進(jìn)而引起分布在附近的耳蝸傳入纖維產(chǎn)生動作電位,傳向聽覺高級樞,產(chǎn)生聽覺。至于內(nèi)毛細(xì)胞和外毛細(xì)胞在功能上有何不同,有人首先注意到它們所接受的傳入纖維的數(shù)目有極大差異。據(jù)計算,人一側(cè)耳蝸內(nèi)毛細(xì)胞的總數(shù)約為3500個,外毛細(xì)胞則有約15000個,但來自螺旋神經(jīng)節(jié)的約32000條聽神經(jīng)傳入纖維中約有90%分布到內(nèi)毛細(xì)胞的底部,這說明一個內(nèi)毛細(xì)胞可接受多條傳入纖維的分布,而多個外毛細(xì)胞才能接受一個傳入纖維的軸突分支。因此一般認(rèn)為,內(nèi)毛細(xì)胞的作用是把不同頻率的聲音振動轉(zhuǎn)變?yōu)榇罅糠植荚谒鼈兊撞康膫魅肜w維的神經(jīng)沖動,向中樞傳送聽覺信息,而息細(xì)胞的作用近年來卻發(fā)現(xiàn)有些特殊。有人發(fā)現(xiàn)毛細(xì)胞在基底膜振動和聽毛受力而出現(xiàn)微音器電位時,此細(xì)胞可產(chǎn)生形體長短的快速改變,超極化引起細(xì)胞伸長,去極化引起細(xì)胞縮短,它們的形體改變因此也和外來聲音振動的頻率和振幅同步。據(jù)認(rèn)為,外毛細(xì)胞的這種形體改變可以使所在基底膜部分原有的振動增強,亦卻對行經(jīng)該處的行波起放大作用,這顯然使位于該部分基底膜上的內(nèi)毛細(xì)胞更易受到刺激,提高了對該振動頻率的敏感性。外毛細(xì)胞因膜內(nèi)外電位差改變引起的機制尚不清楚,但這使得基底膜不僅僅是以固定的結(jié)構(gòu)“被動”地對外界的振動產(chǎn)生行波,它還可以“主動”地增強行波的振動幅度。

四、聽神經(jīng)動作電位

聽神經(jīng)纖維的動作電位,是耳蝸對聲音刺激一一系列反應(yīng)中最后出現(xiàn)的電變化,是耳蝸對聲音刺激進(jìn)行換能和編碼作用的總結(jié)果,中樞的聽覺感受只能根據(jù)這些傳入來引起。圖9-19中的N1、N2、N3……是從整個吸神經(jīng)上記錄到復(fù)合動作電位,并非由單一聽神經(jīng)纖維的興奮所產(chǎn)生。用不同頻率的純音刺激耳蠅,同時檢查不同的單一聽神經(jīng)纖維的沖動發(fā)放情況,就可檢查行波理論是否正確,也可闡明耳蝸編碼作用的某些特點。仔細(xì)分析每一條聽神經(jīng)纖維的放電牧場生和聲音頻率之間的關(guān)系時,發(fā)出如果聲音強度夠大時,同一纖維常可對一組頻率相近的純音刺激起反應(yīng),但如果將聲音強度逐漸減弱,則可找到一個纖維的最佳反應(yīng)頻率,即當(dāng)別的刺激頻率都因強度太弱而不引起動作電位時,該頻率仍能引起。每一條纖維的最佳反應(yīng)頻率的高低,決定于該纖維末稍的基底膜上分布位置,而這一部分正好是該頻率的聲音所引起的最大振幅行波的所在位置。由這類實驗得出的初步結(jié)論是,當(dāng)某一頻率的聲音強度較弱時,神經(jīng)信號由少數(shù)對該頻率最敏感的神經(jīng)纖維向中樞傳遞,當(dāng)這一頻率的聲音強度增大時,除了能引起上述纖維興奮外,還能引起更多一些其最佳反應(yīng)頻率與該頻率相近的神經(jīng)纖維也發(fā)生興奮,使更多的纖維參加到傳音的頻率及其強度的行列里來,結(jié)果是由這些纖維傳遞的神經(jīng)沖動,共同向中樞傳遞這一聲音的頻率及其強度的信息。在自然情況下,作用于人耳的聲音捱牟頻率和強度的變化是十分復(fù)雜的,因此基底膜的振動形式和由此而引起聽神經(jīng)纖維的興奮及其組合也是十分復(fù)雜的;人耳可以區(qū)別不同音色,其基礎(chǔ)可能亦在于此。

...
關(guān)于我們 - 聯(lián)系我們 -版權(quán)申明 -誠聘英才 - 網(wǎng)站地圖 - 醫(yī)學(xué)論壇 - 醫(yī)學(xué)博客 - 網(wǎng)絡(luò)課程 - 幫助
醫(yī)學(xué)全在線 版權(quán)所有© CopyRight 2006-2046, MED126.COM, All Rights Reserved
皖I(lǐng)CP備06007007號
百度大聯(lián)盟認(rèn)證綠色會員可信網(wǎng)站 中網(wǎng)驗證